INPUT TRANSFORM: S DIC("S")="I $L($P(^(0),U,5))" D ^DIC K DIC S DIC=DIE,X=+Y K:Y<0 X
LAST EDITED: SEP 11, 1984
DESCRIPTION:
This is the individual test for which normal values are going to be entered.
CROSS-REFERENCE: ^^TRIGGER^62.31^3
1)= K DIV S DIV=X,D0=DA(1),DIV(0)=D0,D1=DA,DIV(1)=D1 S Y(1)=$S($D(^LAB(62.3,D0,1,D1,0)):^(0),1:"") S X=$P(Y(1),U,4) S DIU=X K Y X ^DD(62.31,.01,1,1,1.1) X ^DD(62.31,.01,1,1,1.4)
1.1)= S Y(1)=$S($D(D0):D0,1:""),D0=DIV S:'$D(^LAB(60,+D0,0)) D0=-1 S Y(102)=$S($D(^LAB(60,D0,0)):^(0),1:""),Y(101)=X S X=$P(Y(102),U,5) S D0=Y(1)
1.4)= S DIH=$S($D(^LAB(62.3,DIV(0),1,DIV(1),0)):^(0),1:""),DIV=X X "F %=0:0 Q:$L($P(DIH,U,3,99)) S DIH=DIH_U" S %=$P(DIH,U,5,999),^(0)=$P(DIH,U,1,3)_U_DIV_$S(%]"":U_%,1:""),DIH=62.31,DIG=3 D ^DICR:$O(^DD(DIH,DIG,1,0))>0
2)= K DIV S DIV=X,D0=DA(1),DIV(0)=D0,D1=DA,DIV(1)=D1 S Y(1)=$S($D(^LAB(62.3,D0,1,D1,0)):^(0),1:"") S X=$P(Y(1),U,4) S DIU=X K Y X ^DD(62.31,.01,1,1,2.1) X ^DD(62.31,.01,1,1,2.4)
2.1)= S Y(1)=$S($D(D0):D0,1:""),D0=DIV S:'$D(^LAB(60,+D0,0)) D0=-1 S Y(102)=$S($D(^LAB(60,D0,0)):^(0),1:""),Y(101)=X S X=$P(Y(102),U,5) S D0=Y(1)
2.4)= S DIH=$S($D(^LAB(62.3,DIV(0),1,DIV(1),0)):^(0),1:""),DIV=X X "F %=0:0 Q:$L($P(DIH,U,3,99)) S DIH=DIH_U" S %=$P(DIH,U,5,999),^(0)=$P(DIH,U,1,3)_U_DIV_$S(%]"":U_%,1:""),DIH=62.31,DIG=3 D ^DICR:$O(^DD(DIH,DIG,1,0))>0
INPUT TRANSFORM: K:+X'=X!(X>99999999)!(X<-99999999)!(X?.E1"."5N.N) X
LAST EDITED: DEC 24, 1983
HELP-PROMPT: TYPE A NUMBER BETWEEN -99999999 AND 99999999
DESCRIPTION:
Enter the expected value for one standard deviation on the test. This value is used to compute the 2 standard deviation lines in the Levey-Jennings plots. It is also used in the Multirule-Shewhart.